
Package: tagcloud (via r-universe)
September 5, 2024

Type Package

Title Tag Clouds

Version 0.6

Date 2015-07-02

Author January Weiner

Maintainer January Weiner <january.weiner@gmail.com>

Description Generating Tag and Word Clouds.

License GPL (>= 2)

LazyLoad yes

Depends Rcpp (>= 0.9.4)

Imports RColorBrewer

Suggests extrafont,knitr

VignetteBuilder knitr

LinkingTo Rcpp

URL http://logfc.wordpress.com

NeedsCompilation yes

Repository https://january3.r-universe.dev

RemoteUrl https://github.com/january3/tagcloud

RemoteRef HEAD

RemoteSha da7ef345f3e3a41d456ee7151d7730723029e99a

Contents
editor.tagcloud . 2
gambia . 3
plot.tagcloud . 4
smoothPalette . 7
strmultline . 8

Index 10

1

http://logfc.wordpress.com

2 editor.tagcloud

editor.tagcloud Simple interactive editing of tag clouds

Description

A minimalistic editor for object of the tagcloud class.

Usage

editor.tagcloud(boxes)

Arguments

boxes An object of the tagcloud class, returned by the tagcloud function.

Details

tagcloud provides a minimalistic editor for tag clouds produced by tagcloud function. After
editor.tagcloud is called, the tag cloud is plotted. First click selects the tag to be moved. The
second click sends the tag such that its left lower corner is at the position indicated by the mouse.
Right-clicking terminates the program.

Value

An object of the tagcloud class with the modified positions of the tags.

Author(s)

January Weiner <january.weiner@gmail.com>

See Also

tagcloud

Examples

Not run:
data(gambia)
terms <- gambia$Term
tagcloud(terms)
boxes <- editor.tagcloud(boxes)

End(Not run)

gambia 3

gambia Results of GO enrichment analysis in TB

Description

A data.frame object containing the results of a GO enrichment analysis from the GOstats package.

Format

A data frame with 318 observations on the following 9 variables.

GOBPID Pvalue OddsRatio ExpCount Count Size Term

GOBPID Gene Ontology (GO) biological process (BP) identifier

Pvalue P value from enrichment test

OddsRatio Measure of enrichment

ExpCount expected number of genes in the enriched partition which map to this GO term

Count number of genes in the enriched partition which map to this GO term

Size number of genes within this GO Term

Term Gene Ontology term description

Details

The data results from a microarray analysis of the whole blood transcriptome of tuberculosis (TB)
patients compared to healthy individuals. Genes were sorted by their p-value and analysed using
the GOstats package.

Significantly enriched GO terms are included in this data frame.

Source

Maertzdorf J., Ota M., Repsilber D., Mollenkopf H.J., Weiner J., et al. (2011) Functional Cor-
relations of Pathogenesis-Driven Gene Expression Signatures in Tuberculosis. PLoS ONE 6(10):
e26938. doi:10.1371/journal.pone.0026938

Examples

data(gambia)
tagcloud(gambia$Term, -log(gambia$Pvalue))

4 plot.tagcloud

plot.tagcloud Tag and Word Clouds

Description

Functions to create and display plots called tag clouds, word clouds or weighted lists, in which a
usually large number of words is displayed in size correlated with a numerical value (for example,
frequency in a text or enrichment of a GO term). This makes it easier to visualize the prominence
of certain tags or words. Also, it looks nice.

Usage

S3 method for class 'tagcloud'
plot(x, family = NULL, add = FALSE, with.box = FALSE,
col = NULL, sel = NULL, ...)

S3 method for class 'tagcloud'
summary(object, ...)

tagcloud(tags, weights = 1, algorithm = "oval", scale = "auto",
scale.multiplier = 1, order = "size", sel = NULL, wmin = NULL,
wmax = NULL, floor = 1, ceiling = 3, family = NULL, col = NULL,
fvert = 0, plot = TRUE, add = FALSE)

Arguments

x, object An object of the type produced by tagcloud.

family Font family to use, a vector containing font families to use for each tag. For the
tagcloud function, the special keyword "random" can be used to assign random
families (requires the extrafont package).

add If TRUE, the tags will be added to the current plot instead of creating a new plot.

with.box If TRUE, a rectangle will be plotted around each tag.

col Color or a vector containing colors to use for drawing the tags.

sel An integer or boolean vector indicating which terms from the provided list will
be used to plot. The vectors col and weights will be filtered accordingly.

tags A character vector containing words or tags to be shown on the plot.

weights A numeric vector giving the relative proportions of text size corresponding to
the given tag.

algorithm Name of the algorithm to use. Can be "oval", "fill", "random", "snake", "list" or
"clist". See Details.

scale If "auto", text expansion will be calculated automatically to fit the available
space. Otherwise, a numeric value used to modify the calculated text sizes; tune
scale to achieve a better fit.

plot.tagcloud 5

scale.multiplier

Multiplier for the final calculated text expansion parameter. Increase if there is
too much empty space around the tag cloud; decrease if the tags go over the plot
boundaries.

order Determines in which order the tags will be drawn. Can be "size", "keep", "ran-
dom", "height" or "width". See Details.

wmin All items in the weights vector smaller than wmin will be changed to wmin

wmax All items in the weights vector larger than wmax will be changed to wmax

floor Minimal text size. See Details.

ceiling Maximal text size. See Details.

fvert Fraction of tags which will be rotated by 90 degrees counterclockwise.

plot If FALSE, no plot will be produced.

... Further arguments to be passed to downstream methods.

Details

The package tagcloud creates and plots tag clouds (word clouds). The algorithms in the package
have been designed specifically with long tags (such as GO Term descriptions) in mind.

Term ordering: The available arguments are as follows:

• size – tags are ordered by size, that is, their effective width multiplied by their effective
height. Default.

• keep – keep the order from the list of words provided
• random – randomize the tag list
• width – order by effective screen width
• height – order by effective screen height

By default, prior to plotting terms are ordered by size.

Algorithms: There are four algorithms for placing tags on the plot implemented in tagcloud.

• oval – creates an oval cloud.
• fill – an attempt will be made to fill the available space
• random – randomly distribute tags over the available space. This algorithm is slow and not

very effective
• snake – tags are placed clockwise around the first tag to plot
• list – create a list, one tag directly beneath another, justified left
• clist – create a list, one tag directly beneath another, centered

Algorithms oval, fill and random attempt to fill the available space by adjusting the scaling
factor for the font sizes.

Calculation of tag sizes: Placing tags such that the empty space between the tags is minimized
poses a non-trivial problem, because the effective bounding box of a displayed text is not linearly
dependent on the cex parameter.
In tagcloud, first a cex parameter is calculated for each tag separately, based on the parameters
floor, ceiling and the vector of weights. Note that all weights smaller than wmin are replaced

6 plot.tagcloud

by wmin and all weights larger than wmax are replaced by wmax. Then, effective heights and widths
of the tags to be displayed are calculated using the strwidth and strheight functions.
Unless the argument scale is different from "auto", a scaling parameter for cex is automatically
calculated based on the current area of the tags and the available plotting area. This usually results
in a reasonable plot, but is neither guaranteed to occupy all of the available space without margins,
nor that no tag will cross the view port.

Value

tagcloud returns an object of the tagcloud-class, which really is a data frame with the following
columns:

• tags – the tags, words or phrases shown on the plot

• weights – a numeric vector that is used to calculate the size of the plotted tags

• family – name of the font family to be used in plotting

• vertical – whether the tag should be rotated by 90 degrees counter-clockwise

• x,y – coordinates of the left lower corner of the tags bounding box

• w,h – width and height of the bounding box

• cex – text expansion factor, see par

• s – surface of the tag (width x height)

The object of the tagcloud class can be manipulated using editor.tagcloud and displayed using
plot, print and summary functions.

Note

Care should be taken when using extra fonts loaded by the extrafont package; not all fonts can be
easily copied to a PDF file.

Some ideas in this package are based on the ‘wordcloud‘ package by Ian Fellows.

Author(s)

January Weiner <january.weiner@gmail.com>

See Also

editor.tagcloud – interactive editing of tagcloud objects.

strmultline – splitting multi-word sentences into lines for a better cloud display.

smoothPalette – mapping values onto a color gradient.

Examples

a rather boring tag cloud
data(gambia)
terms <- gambia$Term
tagcloud(terms)

smoothPalette 7

tag cloud with weights relative to P value
colors relative to odds ratio, from light
grey to black
weights <- -log(gambia$Pvalue)
colors <- smoothPalette(gambia$OddsRatio, max=4)
tagcloud(terms, weights, col= colors, algorithm= "oval")

tag cloud filling the whole plot
tagcloud(terms, weights, col= colors, algorithm= "fill")

just a list of only the first ten terms
tagcloud(terms, weights, sel= 1:10,

col= colors, algorithm= "list", order= "width")

oval, with line breaks in terms
terms <- strmultline(gambia$Term)
tagcloud(terms, weights, col= colors, algorithm= "oval")

Not run:
shows available font families, scaled according to
the total disk space occupied by the fonts
require(extrafont)
ft <- fonttable()
fi <- file.info(fonttable()$fontfile)
families <- unique(ft$FamilyName)
sizes <- sapply(families,function(x) sum(fi[ft$FamilyName == x, "size"]))
tagcloud(families, sizes, family= families)

End(Not run)

smoothPalette Replace a vector of numbers by a gradient of colors

Description

Replace a vector of numbers by a vector of colors from a palette, such that values correspond to the
colors on a smooth gradient.

Usage

smoothPalette(x, pal = NULL, max = NULL, min = NULL, n = 9,
palfunc = NULL, na.color = "white")

Arguments

x A numeric vector

pal Character vector containing the color gradient onto which the numeric vector x
will be mapped. By default, a gradient from white to black is generated. If it is
a single character value, it will be treated as name of an RColorBrewer palette
(see brewer.pal).

8 strmultline

max Values of x larger than max will be replaced by max

min Values of x smaller than min will be replaced by min

n Number of steps

palfunc Palette function returned by colorRampPalette

na.color NA values will be replaced by that color

Details

This function is used to map a continues numerical vector on an ordinal character vector, in espe-
cially a vector of colors. Color palette can be specified using an RColorBrewer palette name.

Value

A character vector of the same length as the numeric vector x, containing the matching colors.

Author(s)

January Weiner <january.weiner@gmail.com>

See Also

tagcloud

Examples

smoothPalette(1:3)
will print:
"#CCCCCC" "#666666" "#000000"

smoothPalette(1:3, pal= "Blues")
will produce:
"#F7FBFF" "#6BAED6" "#08306B"

x <- runif(100)
plot(1:100, x, col= smoothPalette(x, pal= "BrBG"), pch= 19)

strmultline Replace some spaces in multi-word sentences by newlines

Description

Replace a space character by a newline in a multi-word sentence to get a better height / width ratio

Usage

strmultline(strings, ratio = 0.2)

strmultline 9

Arguments

strings a character vector containing the multi-word sentences to be split

ratio the desired ratio height / width

Details

Very long tags, for example GO Term descriptions, make a bad tag cloud. strmultline tries to
chop up such a long sentence into multiple (currently two) lines, to get a better height / width ratio.

Value

A character vector containing the modified sentences.

Author(s)

January Weiner <january.weiner@gmail.com>

See Also

tagcloud

Index

∗ clouds
editor.tagcloud, 2

∗ cloud
plot.tagcloud, 4

∗ datasets
gambia, 3

∗ editing
editor.tagcloud, 2

∗ list
plot.tagcloud, 4

∗ mapping
smoothPalette, 7

∗ palette
smoothPalette, 7

∗ splitting
strmultline, 8

∗ strings
strmultline, 8

∗ tagcloud
gambia, 3

∗ tags
editor.tagcloud, 2
plot.tagcloud, 4

∗ tag
editor.tagcloud, 2
plot.tagcloud, 4

∗ weighted
plot.tagcloud, 4

∗ word
plot.tagcloud, 4

brewer.pal, 7

editor.tagcloud, 2, 6

gambia, 3

par, 6
plot, 6
plot.tagcloud, 4

print, 6
print.tagcloud (plot.tagcloud), 4
print.tagcloudsummary (plot.tagcloud), 4

smoothPalette, 6, 7
strheight, 6
strmultline, 6, 8
strwidth, 6
summary, 6
summary.tagcloud (plot.tagcloud), 4

tagcloud, 2, 8, 9
tagcloud (plot.tagcloud), 4
tagcloud-class (plot.tagcloud), 4
tagcloud-package (plot.tagcloud), 4

10

	editor.tagcloud
	gambia
	plot.tagcloud
	smoothPalette
	strmultline
	Index

